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Outline 

What is dimension reduction? 

Why dimension reduction? 

Dimension reduction algorithms 

Principal Component Analysis (PCA) 

Local linear embedding 

Feature selection 



What is dimension reduction? 

Dimension reduction refers to the mapping of the 

original high-dim data onto a lower-dim space  

 Criterion for dimension reduction can be different based on 

different problem settings 

 Unsupervised setting: minimize the information loss 

 Supervised setting: maximize the class discrimination 

 

Given a set of data points of p variables 

     Compute the linear transformation (projection)  

 



What is dimension reduction? – linear case 

Linear transformation 

Original data reduced data 



Why dimension reduction? 

Most machine learning and data mining techniques may not be 

effective for high-dimensional data  

 Curse of Dimensionality 

 Query accuracy and efficiency degrade rapidly as the dimension 

increases. 

 

The intrinsic dimension may be small.  

 For example, the number of genes responsible for a certain type of 

disease may be small. 



Why dimension reduction? 

Visualization: projection of high-dimensional data onto 2D 

or 3D. 

 

Data compression: efficient storage and retrieval. 

 

Noise removal: positive effect on query accuracy. 



Example: a job satisfaction questionnaire 

A questionnaire with 7 items 



Example: a job satisfaction questionnaire 

A questionnaire with 7 items, each item corresponds to a variable 

N = 200 (participants)  

satisfaction with supervision 

satisfaction with pay 

Strong 

correlation 

means high 

redundancy 



Redundant? 

which one is redundant? 

 

 

 

 

 

 

 

 highly redundant data are likely to be compressible  -- essential 

idea for dimension reduction 



More examples 

Face recognition: 

 Representation: a high-dimensional vector (e.g., 20 x 28 = 560) 

where each dimension represents the brightness of one pixel 

 

 

 

 

 Underlying structure parameters: different camera angles, pose 

and lighting condition, face expression, etc. 



More examples 

Character recognition: 

 Representation: a high-dimensional vector (e.g., 28 x 28 = 784) 

where each dimension represents the brightness of one pixel 

 

 

 

 

 Underlying structure parameters: orientation, curvature, style 

(e.g., 2 with/without loops) 



More examples 

Text document analysis: 

 Representation: a high-dimensional vector (e.g., 10K) of term 

frequency over the vocabulary of the word 

 

 

 

 

 

 Underlying structure parameters: topic proportions, clustering 

structure 



More examples 

Motion capture: 

 Representation: pose is determined, e.g., by the 3D coordinates 

of multiple points on the body 

 

 

 

 

 

 Underlying structure parameters: pose type 

 Motion can be viewed as a trajectory on the manifold 



More examples 

Microarray gene expression: 

 Representation: vector of gene expression values or sequences 

of such vectors 

 

 

 

 

 

 Underlying structure parameters: correlated (or dependent) 

gene groups 



Dimension reduction algorithms 

Many methods have been developed 

 

 

 

 

 

 

 

 

 

We will cover PCA and LLE as examples 

Unsupervised Supervised 

Linear 

Non-linear 

PCA, ICA, 

SVD, LSA (LSI) 

Isomap, 

LLE, 

MDR 

LDA, 

CCA, 

PLS 

Learning with  

Non-linear kernels 



PCA: Principal Component Analysis 

probably the most widely-used and well-known of the 

“standard” multivariate methods 

 
invented by Karl Pearson (1901) and independently 

developed by Harold Hotelling (1933) 

 
first applied in ecology by Goodall (1954) under the name 

“factor analysis” (“principal factor analysis” is a synonym of 

PCA). 

 



Review: Eigenvector, Eigenvalue 

For a square matrix A (p x p), the eigenvector is defined as 
 

 

 where u is an eigenvector and     is the corresponding eigenvalue 
 

Put in a matrix form 

 

 

 

For symmetric matrices, the eigenvectors can be orthogonal 

 

 Thus:  



PCA for dimension reduction 

Minus the empirical mean to get centered data 

Compute the covariance 

 

Doing eigenvalue decomposition 

 Let U be the eigenvectors of S corresponding to the top d 

eigenvalues 

Encode data 

Reconstruct data 

 

An eigen-decomposition process to data covariance matrix 



Apply to data covariance -- eigensystem 

The eigenvectors of the covariance     define a new axis system 

 

 

 

 

 

 

 

 Any point       in the X-axis system,       is the data mean, the 

coordinate in the U-axis system is: 



A 2D Example 

2D data represented in 1D dimensions 

[http://setosa.io/ev/principal-component-analysis/] 



A 2D Example 

2D data represented in 1D dimensions 

[http://setosa.io/ev/principal-component-analysis/] 



A 3D Example 

3D data represented in 2D dimensions 

[http://setosa.io/ev/principal-component-analysis/] 



A high-dimensional Example 

 



Eigenfaces 



How to choose d? 

Measure the total variance accounted for by the d principal 

components 

 the percentage of the variance accounted for by the i-th 

eigenvector: 

 

 

 

 Account for a minimum percentage of total variance, e.g., 95%: 

 



Theory of PCA 

There are three types of interpretation 

 

 Minimum variance 

 Least reconstruct error 

 Probabilistic model 



Maximum Variance Formulation 

Given a set of data points 

 

 

Goal: 

 Project the data into an d-dimensional (d < p) space while 

maximizing the variance of the projected data  

p 

N 

X d 

N 

Y 



Maximum Variance Formulation 

Let’s start with the 1-dimensional projection, i.e., d = 1 

We only care about the projection direction, not the scale, so 

we assume 

 

The projection is 

 

Mean and variance of projected data: 

 

 

 

 sample covariance 



Maximum Variance Formulation 

Now, we get a constrained optimization problem 

 

 

 where 

Solve it using Lagrangian methods, we get 

 The eigenvector problem 

 

 The lagrange multiplier is the eigenvalue 

 

 The eigenvector corresponds to largest eigenvalue is 1st PC. 



Maximum Variance Formulation 

Additional components can be incrementally found 

 

 

 where                     and  

Solve this problem with Lagrangian method, we have 

 

 which leads to 

 

 Left multiplying        , we get (remember     is eigenvector) 

 

 

 Thus,  



Maximum Variance Formulation 

 

For the general case of an d dimensional subspace, it is 

obtained by the d eigenvectors                          of the data 

covariance matrix S corresponding to the d largest 

eigenvalues 



Minimum Error Formulation 

A set of complete orthonormal basis 

 

 

 

Each data point can be represented as 

 

 

 Due to the orthonormal property, we can get 



Minimum Error Formulation 

A set of complete orthonormal basis 

 

 

 

We consider a low-dimensional approximation 

 

 

 where      are constants for all data points 

The best approximation is to minimize the error 



Minimum Error Formulation 

A set of complete orthonormal basis 

 

The best approximation is to minimize the error 

 

 

 we get (proof?) 

 

 

 Use the general representation                             , we get that 

the displacement lines in the orthogonal subspace 



Minimum Error Formulation 

With the result 

 

We get the error 

 

 

 

 

The optimization problem 

 

 where 



Minimum Error Formulation 

Consider a 2-dimensional space (p=2) and a 1-dimensional 
principal subspace (d=1). Then, we choose      that minimizes 

 

 

 

 We have: 

 

We therefore obtain the minimum value of J by choosing      
as the eigenvector corresponding to the smaller eigenvalue 

We choose the principal subspace by the eigenvector with the 
large eigenvalue 



Minimum Error Formulation 

The general solution is to choose the eigenvectors of the 

covariance matrix with d largest eigenvalues 

 

 

 where  

 

The distortion measure (i.e., reconstruction error) becomes 



PCA Reconstruction 
By the minimum error formulation, the PCA approximation can be 
written as: 

 
 
 
 

We have 

 

 

 

 

 

 

Essentially, this representation implies compression of p-dim data into a 
d-dim vector with components 



Probabilistic PCA 

A simple linear-Gaussian model 

Let z be a latent feature vector 

 In Bayesian, we assume it’s prior 

A linear-Gaussian model 

 

 

 this gives the likelihood 

 

 

 the columns of W span a linear subspace 



Probabilistic PCA 

By the properties of Gaussian, we can get the marginal 

 

 

 

 

 



Unidentifiability issue 

Any rotation of the latent dimensions leads to invariance of 

the predictive distribution 

 

 

 

 Let R be an orthogonal matrix with  

 Define  

 Then, we have  

 

 which is independent of R 



Inverse of the Covariance matrix 

Evaluating the inverse of the covariance matrix C has 

complexity           . We can do inversion as follows 

 

 

 where the d x d matrix M is: 

 

 

Evaluating the inverse of M has complexity 



Probabilistic PCA 

By the properties of Gaussian, we can get the posterior 

 

 

 

 

 The posterior mean depends on x (a linear projection of x) 

 

 

 Posterior covariance is independent of x 

 



Maximum Likelihood PCA 

Given a set of observations                 , the log-likelihood is 

 

 

 

 

 

We get the MLE:                   and 

 

 



Maximum Likelihood PCA 

Log-likelihood 

 

 The stationary points can be written as (Tipping & Bishop, 1999) 

 

 

        is diagonal with eigenvalues     ; R is an arbitrary d x d orthogonal 

matrix;        is p x d matrix whose columns are eigenvectors of S 

 The maximum of likelihood is obtained while the d eigenvectors are 

chosen to be those whose eigenvalues are the d largest 

 MLE for       is: 

 

 The average variance associated with the discarded dimensions 

 

 

Read proof at [Tipping & Bishop. Probabilistic Principal Component Analysis, JRSS, 1999] 



Maximum Likelihood PCA 

Since the choice of R doesn’t affect the covariance matrix, we 
can simply choose  

 

Recover the conventional PCA 

 Take the limit               , we get the posterior mean 

 

 

 

 which is an orthogonal projection of the data point into the 
latent space 

 So we recover the standard PCA 



EM Algorithm for PPCA 

E-step: evaluate expectation of complete likelihood 

 

 

 

 where 

 

 

M-step: optimizes over parameters 



Bayesian PCA 

A prior is assumed on the parameters W 

 

 

 

 

 

 

 

 

 

Inference can be done in closed-form, as in GP regression 

Fully Bayesian treatment put priors on 



Factor Analysis 

Another simple linear-Gaussian model 

Let z be a latent feature vector 

 In Bayesian, we assume it’s prior 

A linear-Gaussian model 

 

 

       is a diagonal matrix 

 this gives the likelihood 

 

 

 the columns of W span a linear subspace 



Factor Analysis 

We can the inference tasks almost the same as in PCA 

The predictive distribution is Gaussian 

EM algorithm can be applied to maximum likelihood 

estimation 

 



PCA in high-dimensions 

What is p is very large, e.g., p >> N?  

 

 

 which is a            matrix 

 

 Finding the eigenvectors typically has complexity 
 Computationally expensive 

 The number of nonzero eigenvalues is no larger than N 
 Waste of time to work with S 

 

 How about working with the                full rank Gram matrix? 



Dual PCA – PCA in high-dimensions 

 

For centered data, we have 

                          with eigenvalues and eigenvectors 

                          with eigenvalues and eigenvectors 

 

By left-multiplying        to                            , we get 

                                                  ,      

Thus,  



Kernel PCA 

PCA is linear: the reduced dimension representation is 

generated by linear projections 

Kernel PCA is nonlinear by exploring kernel trick 
 

 

 

Apply dual PCA in the Hilbert space 

 

 

 where k(.,.) is the reproducing kernel 

[Scholkopf, Smola, Muller. Kernel Principal Component Analysis, 1999] 



Example of Kernel PCA 

 



Example of Kernel PCA 



 

 

Nonlinear Dimension Reduction 

(Manifold Learning) 



Manifold Learning 

Manifold: a smooth, curved subset of an Euclidean space, in 
which it is embedded 

 

 

 

 

 

 

 

 

 

A d-dim manifold can be arbitrarily well-approximated by a d-dim 
linear subspace, the tangent space, by taking a sufficiently small 
region about any point 



Manifold Learning 
 

 

 

 

 

 

 

 

 

If our data come from a manifold, we should be able to do a local linear 
approximation around each part of the manifold, and then smoothly 
interpolate them together into a single global system 

 

To do dimension reduction, we want to find the global low-dim 
coordinates 



Locally linear embedding (LLE) 

A nonlinear dimension reduction technique to preserve neighborhood 
structure 

 

 

 

 

 

 

 

 

Intuition: nearby points in the high dimensional space remain nearby 
and similarly co-located w.r.t one another in the low dimensional space 

[Roweis & Saul, Science, Vol 290, 2000; Saul & Roweis, JMLR 2003] 



How does LLE work? 

 

Step 2: minimize reconstruction error Step 3: neighborhood-preserving embedding 

geometric structure W 



Implementation details 

Free parameter: K – number of neighbors per data point 

Original manifold 

samples 

Embedding results by LLE with various K 



Implementation details  

Step 1: choose neighborhood – many choices 

 

 

 

 

 

 

Note: different points can have different numbers of 

neighbors 



Implementation details  

Step 2: minimize reconstruction error 

 

 

 

 each data point can be done in parallel – locality 

 

 

 

 Solution (Lagrange methods):  



Implementation details  

What’s happening if K > p?  

 The space spanned by k distinct vectors is the whole space 

 Each data point can be perfectly reconstructed from its 
neighbors 

 

 G is singular! (fewer constraints than parameters) 

 The reconstruction weights are no longer uniquely defined 
 

 Example (D=2, K=4) 

 

 

 



Implementation details  

What’s happening if K > p?  

 The space spanned by k distinct vectors is the whole space 

 Each data point can be perfectly reconstructed from its neighbors 

 

 G is singular!  

 The reconstruction weights are no longer uniquely defined 

Regularized opt. problem: (save ill-posed problems) 

 

 

 

 Solution (Lagrange methods):  



Implementation details  

Step 3: neighborhood-preserving embedding 

 

 

 

 

 all data points are coupled together – global coordinates 

 Solution (Lagrange methods) – eigenvalue problem:  

centered around the origin 

unit covariance 

Find the d eigenvectors with the lowest eigenvalues 



More examples 

 

[Roweis & Saul, Science, Vol 290, 2000; Saul & Roweis, JMLR 2003] 



More examples 

1965 grayscale 20 x 28 images (D=560); K = 12 

[Roweis & Saul, Science, Vol 290, 2000; Saul & Roweis, JMLR 2003] 



Many other algorithms 

 

[van der Maaten et al., Dimension Reduction: A Comparative Review, 2008] 



 

[van der Maaten et al., Dimension Reduction: A Comparative Review, 2008] 

Note:  n is N; D is p in our slides 



No Free Lunch 

The “curvier” your manifold, the denser your data must be! 



Matlab Toolbox 

 

 

 

 

 

 

Laurens van der Maaten 

 

http://lvdmaaten.github.io/drtoolbox/ (34 techniques for 
dimensionality reduction and metric learning) 

http://lvdmaaten.github.io/drtoolbox/
http://lvdmaaten.github.io/drtoolbox/
http://lvdmaaten.github.io/drtoolbox/


What is dimension reduction? – linear case 

Linear transformation 

Original data reduced data 



What is feature selection? 

Linear transformation 

Original data reduced data 



Feature selection methods 

FS is popular in supervised learning by maximizing some function 
of predictive accuracy 

Selecting an optimal set of features is NP-hard (Weston et al., 
2003) 

 

FS Learning 

FS Learning 

FS & 

Learning 

Approximate methods: 
 Filter methods [Kira & Rendell, 1992] (Separate) 

 Based on feature ranking (individual predictive power);  

 A pre-processing step and independent of prediction models 
(optimal under very strict assumptions!) [Guyon & Elisseeff, 
2003] 

 Wrapper methods [Kohavi & John, 1997] (Half-
integrated) 
 Use learning machine as a black box to score subsets of 

variables according to their predictive power 

 Can waste of resources to do many re-training! 

 Embedded methods (Integrated) 
 Perform FS during the process of training; Usually specific to 

given learning machines 

 Data efficient and Can avoid many re-training! 

 

 



Unsupervised feature selection 

x and y are redundant in discriminating the two clusters (i.e., 

each one decides the clustering results)  



Unsupervised feature selection 

y is irredundant in discriminating the two clusters 

 

 

 

 

 

 

 

 

 

Note: irrelevant features can misguide clustering 



Unsupervised feature selection 

Different feature subsets lead to different clustering 

 

 

 

 

 

 

 

 

 

Which one should we pick? 



Unsupervised feature selection 

A wrapper framework for unsupervised feature selection 

 

 

 

 

 

Some key issues: 

 Different feature subsets have different numbers of clusters 

 The feature selection criteria have biases w.r.t feature subset 

dimensionality 



Feature Search 

An exhaustive search is intractable (      possible feature 

subsets) 

Greedy search: 

 Sequential forward search 

 Starting from 0 features 

 Add one feature at a time to maximize the gain of some criterion 

 Stop when no improvement 

 Sequential backward elimination 

 Start from the full set 

 Eliminate one feature at a time to minimize the loss of some criterion 

 Stop when no change 

 



Clustering algorithm 

 

Any clustering algorithms can be used in the wrapper 

framework 



Feature subset section criteria 

“different classifications [clusterings] are right for different 

purpose, so we cannot say any one classification is best” 

(Hartigan, 1985) 

Some commonly used criteria: 

 Scatter separability (applicable for any clustering methods) 

 



Feature subset section criteria 

“different classifications [clusterings] are right for different 

purpose, so we cannot say any one classification is best” 

(Hartigan, 1985) 

Some commonly used criteria: 

 Maximum likelihood (applicable for probabilistic methods)  

 



The need for finding the number of clusters 

The number of clusters varies with dimension 

 

 

 

 

 

 

Some selection methods exist for K (Dy & Brodley, 2003) 

[Dy & Brodley, Feature section for unsupervised learning, JMLR 2003] 



What you need to know 

 

Motivations for dimension reduction 

Derivations of PCA 

LLE 

Feature selection 



 

Homework 1 out, due in two weeks! 

 

 

Reading materials: 

 Chapter 12 of Bishop’s PRML 

 References in slides 


